Package: hdbma 1.0

hdbma: Bayesian Mediation Analysis with High-Dimensional Data

Mediation analysis is used to identify and quantify intermediate effects from factors that intervene the observed relationship between an exposure/predicting variable and an outcome. We use a Bayesian adaptive lasso method to take care of the hierarchical structures and high dimensional exposures or mediators.

Authors:Qingzhao Yu [aut, cre, cph], Bin Li [aut]

hdbma_1.0.tar.gz
hdbma_1.0.zip(r-4.5)hdbma_1.0.zip(r-4.4)hdbma_1.0.zip(r-4.3)
hdbma_1.0.tgz(r-4.4-any)hdbma_1.0.tgz(r-4.3-any)
hdbma_1.0.tar.gz(r-4.5-noble)hdbma_1.0.tar.gz(r-4.4-noble)
hdbma_1.0.tgz(r-4.4-emscripten)hdbma_1.0.tgz(r-4.3-emscripten)
hdbma.pdf |hdbma.html
hdbma/json (API)

# Install 'hdbma' in R:
install.packages('hdbma', repos = c('https://qingzhaoyu.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 171 downloads 3 exports 23 dependencies

Last updated 11 months agofrom:a2d64d2fe9. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-winOKNov 10 2024
R-4.5-linuxOKNov 10 2024
R-4.4-winOKNov 10 2024
R-4.4-macOKNov 10 2024
R-4.3-winOKNov 10 2024
R-4.3-macOKNov 10 2024

Exports:hdbmaprint.summary.hdbmasummary.hdbma

Dependencies:abindbitopsbootcaToolsclicodagluegplotsgtoolsKernSmoothlatticelifecyclemagrittrMASSMatrixR2jagsR2WinBUGSrjagsrlangstringistringrsurvivalvctrs